In this project, we’ll walk through building a chatbot using DeepSeek AI and deploying it in a Docker container. This guide is designed for beginners and includes step-by-step instructions and full code snippets to help you create and deploy your chatbot.
Project Overview
We’ll build a simple conversational chatbot using DeepSeek AI’s NLP capabilities. The chatbot will be deployed as a web application using Flask (a Python web framework) and containerized using Docker for easy deployment and scalability.
Prerequisites
Before starting, ensure you have the following installed:
- Python 3.8+
- Docker
- DeepSeek AI SDK (or API access)
- Flask (for the web interface)
- Postman (optional, for testing the API)
Step 1: Set Up Your Project
- Create a project directory:
mkdir deepseek-chatbot
cd deepseek-chatbot
2. Set up a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
3. Install required Python packages:
pip install flask deepseek-sdk
4. Step 2: Create the Chatbot Backend
Create a file named app.py:
from flask import Flask, request, jsonify
from deepseek import DeepSeekClient # Import DeepSeek AI SDK
app = Flask(__name__)
# Initialize DeepSeek AI client
deepseek_client = DeepSeekClient(api_key="your_deepseek_api_key")
@app.route("/chat", methods=["POST"])
def chat():
# Get user input from the request
user_input = request.json.get("message")
# Send the input to DeepSeek AI for processing
response = deepseek_client.generate_response(user_input)
# Return the chatbot's response
return jsonify({"response": response})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000)
Replace "your_deepseek_api_key" with your actual DeepSeek API key.
Step 3: Test the Chatbot Locally
- Run the Flask application:
python app.py
2. Use Postman or curl to test the API:
curl -X POST http://127.0.0.1:5000/chat -H "Content-Type: application/json" -d '{"message": "Hello, how are you?"}'
3. You should receive a response from the chatbot:
{
"response": "I'm doing well, thank you! How can I assist you today?"
}
Step 4: Dockerize the Application
- Create a
Dockerfilein your project directory:
# Use an official Python runtime as a parent image
FROM python:3.8-slim
# Set the working directory in the container
WORKDIR /app
# Copy the requirements file into the container
COPY requirements.txt .
# Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Copy the current directory contents into the container
COPY . .
# Make port 5000 available to the world outside this container
EXPOSE 5000
# Run app.py when the container launches
CMD ["python", "app.py"]
2. Create a requirements.txt file:
flask==2.3.2
deepseek-sdk==1.0.0
3. Build the Docker image:
docker build -t deepseek-chatbot .
4. Run the Docker container:
docker run -p 5000:5000 deepseek-chatbot
5. Test the chatbot using the same curl command as before:
curl -X POST http://127.0.0.1:5000/chat -H "Content-Type: application/json" -d '{"message": "Hello, how are you?"}'
Step 5: Deploy the Chatbot
- Push the Docker image to a container registry (e.g., Docker Hub)
docker tag deepseek-chatbot your_dockerhub_username/deepseek-chatbot
docker push your_dockerhub_username/deepseek-chatbot
2. Deploy the container to a cloud platform (e.g., AWS ECS, Google Cloud Run, or Heroku).
Step 6: Future Enhancements
- Add a Frontend:
- Use HTML/JavaScript to create a simple web interface for the chatbot.
- Integrate with Flask using templates.
2. Improve the Chatbot:
- Fine-tune the DeepSeek AI model for specific use cases.
- Add context management for more natural conversations.
3. Add Logging and Monitoring:
- Use tools like Elasticsearch or Grafana to monitor the chatbot’s performance.
The project code is available at Github.
This project demonstrates how to create a scalable and portable AI-powered application. By containerizing the chatbot, you can easily deploy it to any environment, making it a versatile solution for various use cases.






Leave a comment